Kuga-Satake construction and cohomology of hyperkähler manifolds

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A generalization of the Kuga-Satake construction

The Kuga-Satake construction [3] associates to a polarized Hodge structure H of weight 2 with h2,0 = 1 an abelian variety A which satisfies the property that H is a sub-Hodge structure of Hom (H1(A),H1(A)). The construction is very tricky and intriguing geometrically: one first associates to the lattice (H,<,>) its Clifford algebra C(H), which is again a lattice. Then one constructs a complex s...

متن کامل

Period Maps and Cohomology Cohomology of Compact Hyperkähler Manifolds

Let M be a compact simply connected hy-perkähler (or holomorphically symplectic) manifold, dim H 2 (M) = n. Assume that M is not a product of hyperkaehler manifolds. We prove that the Lie group so(n−3, 3) acts by automorphisms on the cohomology ring H * (M). Under this action, the space H 2 (M) is isomorphic to the fundamental representation of so(n − 3, 3). Let A r be the subring of H * (M) ge...

متن کامل

Kuga-satake Varieties and the Hodge Conjecture

Kuga-Satake varieties are abelian varieties associated to certain weight two Hodge structures, for example the second cohomology group of a K3 surface. We start with an introduction to Hodge structures and we give a detailed account of the construction of Kuga-Satake varieties. The Hodge conjecture is discussed in section 2. An excellent survey of the Hodge conjecture for abelian varieties is [...

متن کامل

Cohomology of Compact Hyperkähler Manifolds and Its Applications

This article contains a compression of results from [V], with most proofs omitted. We prove that every two points of the connected moduli space of holomorphically symplectic manifolds can be connected with so-called “twistor lines” – projective lines holomorphically embedded to the moduli space and corresponding to the hyperkähler structures. This has interesting implications for the geometry o...

متن کامل

Abelian Varieties of Weil Type and Kuga-satake Varieties

We analyze the relationship between abelian fourfolds of Weil type and Hodge structures of type K3, and we extend some of these correspondences to the case of arbitrary dimension.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advances in Mathematics

سال: 2019

ISSN: 0001-8708

DOI: 10.1016/j.aim.2019.04.060